
Validating the Integrity of Audit Logs Against Execution
Repartitioning Attacks

Carter Yagemann

Georgia Institute of Technology

Atlanta, Georgia, USA

Mohammad A. Noureddine

Rose-Hulman Institute of Technology

Terre Haute, Indiana, USA

Wajih Ul Hassan

University of Illinois

Urbana-Champaign, Illinois, USA

Simon Chung

Georgia Institute of Technology

Atlanta, Georgia, USA

Adam Bates

University of Illinois

Urbana-Champaign, Illinois, USA

Wenke Lee

Georgia Institute of Technology

Atlanta, Georgia, USA

ABSTRACT
Provenance-based causal analysis of audit logs has proven to be

an invaluable method of investigating system intrusions. However,

it also suffers from dependency explosion, whereby long-running

processes accumulate many dependencies that are hard to unravel.

Execution unit partitioning addresses this by segmenting dependen-

cies into units of work, such as isolating the events that processed

a single HTTP request. Unfortunately, we discover that current

designs have a semantic gap problem due to how system calls and

application log messages are used to infer complex internal pro-

gram states. We demonstrate how attackers can modify existing

code exploits to control event partitioning, breaking links in the at-

tack and framing innocent users. We also show how our techniques

circumvent existing program and log integrity defenses.

We then propose a new design for execution unit partitioning

that leverages additional runtime data to yield verified partitions

that resist manipulation. Our design overcomes the technical chal-

lenges of minimizing additional overhead while accurately con-

necting low level code instructions to high level audit events, in

part with the use of commodity hardware processor tracing. We

implement a prototype of our design for Linux, MARSARA, and

extensively evaluate it on 14 real-world programs, targeted with ex-

pertly crafted exploits. MARSARA’s verified partitions successfully

capture all the attack provenances while only reintroducing 2.82%

of false dependencies, in the worst case, with an average overhead

of 8.7%. Using a new metric called Partitioning Attack Surface, we

show that MARSARA eliminates 47,642 more repartitioning gadgets

per program than integrity defenses like CFI, demonstrating our

prototype’s effectiveness and the novelty of the attacks it prevents.

CCS CONCEPTS
• Security and privacy→ Systems security; Software and ap-
plication security.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484551

KEYWORDS
auditing, execution unit partitioning, processor tracing

ACM Reference Format:
Carter Yagemann, Mohammad A. Noureddine, Wajih Ul Hassan, Simon

Chung, Adam Bates, and Wenke Lee. 2021. Validating the Integrity of Audit

Logs Against Execution Repartitioning Attacks. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (CCS
’21), November 15–19, 2021, Virtual Event, Republic of Korea. ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3460120.3484551

1 INTRODUCTION
The complexity of interactions within modern computers makes it

difficult to detect, prevent, and reverse unwanted system changes,

such as in the case of an intrusion. A promising method of under-

standing suspicious events is causal analysis, in which system audit

logs are transformed into a data provenance graph that encodes

causal dependencies and historical relationships between subjects

(processes) and objects (files, sockets, etc.) [5, 29, 33, 38, 42, 47, 52].

The resulting provenance graph can then be used by human ana-

lysts or monitoring tools for intrusion detection [3, 14, 68], forensic

investigation [4, 34, 42, 52, 56, 57, 60, 85], andmore [2, 19–21, 34, 95].

However, due to the noisey and complex nature of system in-

teractions, provenance graphs are not always sufficient for inves-

tigating suspicious activity. Specifically, long-running processes

can accumulate causal dependencies over time that become increas-

ingly difficult to unravel; referred to as the dependency explosion
problem [79] (a.k.a. false provenance). For example, consider a web

server handling many requests in parallel. Due to the interwoven

system calls invoked by multiple threads, data provenance will

falsely conclude that all the files read during a request are causally

related to all the currently connected remote IP addresses, which

is excessive. However, multi-threading is not the only source of

false provenance. Even in a single-threaded web server, a request

response will link back to all previously handled requests, even

though no actual data flow between the most recent request and

prior responses occurred.

To address dependency explosion, the research community has

proposed execution unit partitioning (EUP) [36, 48–50, 56–58]. In

EUP, audit log events are grouped at the sub-process level, subdi-

viding a monolithic long-running process into autonomous units of

work that are easier to trace in the graph. Signatures for identifying
where to place partitions are typically generated during an offline

profiling phase and may be encoded in several ways, such as a state

machine of regular expressions to be matched against the audit

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3337

https://doi.org/10.1145/3460120.3484551
https://doi.org/10.1145/3460120.3484551
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460120.3484551&domain=pdf&date_stamp=2021-11-13

log [49]. Continuing the web server example, a unit would be the

code that processes a single request-reponse pair and the signature

is the sequence of system calls and/or application level logs that

the code emits. For example, the code might be expected to open a

socket and record an access log entry with the source IP address,

time, and requested URL at the start of its handling routine. Once a

system call closes the socket, this marks the end of that unit. In this

way, the data provenance system can distinguish between requests,

correctly identifying which objects were accessed or modified on

their behalf. In short, EUP is what makes data provenance viable

for auditing real-world production systems.

However, all existing EUP solutions [36, 48–50, 56–58] make

a dangerous implicit assumption, which we are the first to point

out. Namely, they assume that if the audit log events match the
expected signatures, the underlying application must be performing
the expected execution. Ensuring this in real-world settings requires

complete user program integrity, otherwise a low level bug (e.g.,

overflow, use-after-free) giving rise to emergent execution [9, 18,

75] or out-of-bounds writes [40] can produce erroneous signature

matches. This in turn can add and remove partitions, reintroducing

false dependencies and severing legitimate ones. Potentially, this

would make it possible for the attacker to hide their steps from

investigators while also framing innocent parties.

Would real-world adversaries be motivated to perform such an

attack on EUP-enabled systems? Unsurprisingly, attackers already

tamper with audit logs to cover their tracks [31, 43, 65, 72, 80].

Tampering is so prevalent that 72% of incident responders have en-

countered it during real investigations [15, 23], to which numerous

log integrity defenses have been proposed [7, 24, 32, 37, 41, 44, 45,

55, 62, 66, 67, 71, 73, 74, 91, 92]. However, to our knowledge, all past

solutions focus solely on an offline threat model, with tampering

occurring after events are written to the log and are resting on a

storage device. This is a distinctly different threat to what we just

described, where changes to the user application’s online execution
yields frustratingly incorrect analysis results.

In this work, we are the first to present two avenues for on-
line tampering designed to frustrate provenance analysis without

violating traditional notions of log integrity. At a high level, the

first technique, spoofing, attempts to inject fake log events into

the runtime by either maliciously invoking event-emitting code or

by tampering with write buffers via an arbitrary write primitive

(e.g., format string vulnerability). The second technique, delaying,
introduces memory corruptions with deferred repercussions, allow-

ing the current unit to finish normally, whereas a subsequent unit

(with no discernible causal relationship to the prior) resumes the

attack. To demonstrate practicality, we show how to create working

examples starting from real-world CVE vulnerabilities.

In response to this new threat, the obvious solution would seem
to be the deployment of known control flow integrity (CFI) tech-

niques. However, we surprisingly discover that CFI can only prevent

a subset of EUP-targeted attacks, specifically those built on control

hijacking. Even then, depending on how subtle the hijack is (e.g.,

overwriting a code pointer to an arbitrary address versus another

valid function), the overhead of enforcing sufficiently fine-grained

CFI can be upwards of 47% [39]. Conversely, when data-only ex-

ploits are leveraged, prevention exceeds CFI’s scope [40].

Seeking a different solution, we propose a new defense to validate
the placement of partitions. Specifically, given knowledge about

the kinds of events certain parts of the code should yield (data flow),

and their expected orderings (control flow), our solution compares

runtime execution traces to audit logs to ensure consistency. If the

attacker tries to change the ordering with control flow bending, or

inject fake event data from another part of the program, our defense

will detect the discrepancy, disregarding the resulting events during

partitioning to preserve the integrity of the provenance graph.

However, designing a solution around this idea raises several

technical challenges. First, our system has to accurately determine

which event sequence to expect for a given execution. Fortunately,

rather than having to consider all possible executions, our system

can focus on just the ones used offline to generate EUP signatures.

Any program paths outside this scope were not intended by the

EUP algorithm to yield partitions in the first place. To accomplish

this, we propose a binary analysis that combines concrete execution

traces with symbolic analysis.

Next, our solution has to collect the necessary additional runtime

information to perform validationwhileminimizing additional over-

head compared to prior (insecure) work. To this end, we propose

a design that is compatible with the hardware processor tracing

(PT) available in commodity processors
1
, which a kernel driver can

securely control. We then overcome the challenge of connecting

low level instruction sequences collected with PT to high level audit

log events to accurately perform validation.

To evaluate our design, we implement a prototype for Linux,

MARSARA
2
, and extensively evaluate it on 14 real-world programs

using expertly crafted exploits. MARSARA accurately partitions

all the attack provenances while only reintroducing 2.82% of false

dependencies, in the worst case, with an average performance over-

head of 8.7% over traditional auditing frameworks. We also create

a new metric for measuring the vulnerability of user programs

to EUP attacks, Partitioning Attack Surface (PAS), and show that

MARSARA removes 47,642more gadgets than CFI on our real-world

programs, on average per program. To promote further exploration

of solutions to the new online log integrity problem, we have open

sourced our code and data.
3

2 BACKGROUND & MOTIVATION
Consider an Nginx web server with several worker processes, host-

ing a music website that the attacker aims to steal from. He starts

by triggering CVE-2013-2028 using a maliciously crafted HTTP

request, originating from the IP address x.x.x.x in Figure 1. This

causes a buffer overflow within one of the worker processes, allow-

ing him to inject shellcode and corrupt a code pointer. However,

instead of corrupting any code pointer arbitrarily to point at the

shellcode, he cleverly overwrites a particular event handler
4
that

he knows the worker will not use to complete his request. Conse-

quently, his HTTP request completes with no anomalous system

calls or application messages. We call this novel setup a delay attack,
which we elaborate on in Section 3.

1
Available in Intel

®
, AMD

®
, and ARM

®
processors.

2
Monitor Application Runtimes, Stop Arbitrary Repartitioning Attacks.

3
https://github.com/carter-yagemann/MARSARA

4
ngx_http_process_request_line

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3338

https://github.com/carter-yagemann/MARSARA

x.x.x.x y.y.y.y...

x.x.x.x y.y.y.y...

Nginx Bash Netcat

Bash

sensitive.tar(a) Whole-System Provenance Analysis

(b) Unit-based

1

2

3

4

5

6

Figure 1: Motivating example. The attacker sends a request
1 that produces a seemingly normal response 2 . However,
it has actually employed a delay to trigger the payload 5
during a benign request 3 to exfiltrate a sensitive file 6 ,
which is further obfuscated using spoofed log messages.

Later, a request from a benign IP, y.y.y.y, is received, causing

the worker to access the corrupted code pointer and execute the

shellcode. It starts by reading sensitive local files into a buffer.

However, instead of immediately transmitting the data back to

the attacker’s server, it first writes several forged log entries into

Nginx’s access and debug logs to make it look like the current

request has ended. This is another novel attack technique, which

we coin spoofing and also elaborate on in Section 3.With the spoofed

messages inserted, the shellcode transmits the buffer of sensitive

data back to the attacker and then the worker resumes normal

operation.

2.1 Existing Defenses & Limitations

Intrusion Detection & Prevention. Several aspects of the mo-

tivating attack make it difficult to detect or prevent at the onset.

First, the initial exploit does not emit any anomalous system calls

or application-layer events, rendering host-based defenses reliant

on them ineffective. Obfuscation makes it impractical to detect the

payloads on the network, and the shellcode may no longer be in

memory by the time a symptom of the attack is observed. The

corrupted code pointer requires fine-grained CFI to detect because

its legitimate value is calculated dynamically during runtime and

the necessary instrumentation can yield upwards of 47% execution

overhead [39].

Whole-System Provenance Analysis. Whole-system prove-

nance tools [5, 29, 33, 38, 42, 47, 52] record system call level events

to establish causal dependencies between objects and subjects, re-

sulting in a provenance graph. Figure 1 (a) shows the provenance

graph for our motivating attack scenario without EUP. While the

attacker’s IP address is contained in the provenance graph, we also

see the false dependency problem described in Section 1, where

every open socket is associated with the exfiltrated data, making

it inconclusive which connection instigated the attack and which

request delivered the exploit and payload. At the same time, every

file Nginx touched since its startup (e.g., configurations, temporary

files) is also linked to the attack, making it inconclusive what was

exfiltrated. In short, human analysts and automated systems do not

have a clear picture for answering their forensic questions.

Unit-based Provenance Analysis. EUP [36, 49, 51, 56, 58, 59] at-

tempts to solve this dependency explosion problem by partitioning

the execution of a long-running process into autonomous execution
units in order to provide more precise causal dependency graphs.

While EUP is very useful when the adversary is oblivious to how it

works, the delay and the spoofing attacks in ourmotivating example

exploit it to further obfuscate what occurred.

Figure 1(b) shows the result. The delay attack successfully par-

titions away the request from the attacker (x.x.x.x), causing

y.y.y.y to appear as the origin point of the attack. Addition-

ally, the spoofing employed by the shellcode causes the reading of

sensitive files to be partitioned separately from its transmission,

obfuscating what was actually exfiltrated.

It may be tempting to argue that if the corrupted worker could

be identified, then all these problems would be solved, however

this is not the case. Since Nginx reuses workers across requests,

simply following its PID will wrongly associate unrelated events

from prior and future requests, reintroducing false dependencies.

2.2 Insights & Lessons Learned
From the above discussion of the motivating example, we observe

that data provenance systems that only analyze traditional audit

log events will never be able to verify that the recorded, seemingly

normal, patterns were emitted by normal program execution, and

not by delay or spoofing attacks. Conversely, systems like CFI that

rely purely on low level control flow will never be able to answer

forensic questions that consider the data contents of reads and

writes. Furthermore, we demonstrate in Subsection 3.3 that data-

only attacks can also leverage delays and spoofing, which is outside

CFI’s scope to handle.

Instead, our solution is to leverage execution tracing and knowl-

edge gathered during the offline profiling for EUP to recognize the

manipulative events introduced by the attacker. In this example,

knowing that the worker processing requests executed a program

path (due to the delay attack) that was never seen during profiling

indicates that it should not be isolated into its own partition. Sub-

sequently, recognizing that several log messages originated from a

previously unknown code location (the shellcode), indicates that

they should not be considered during partitioning, preventing the

attack from separating the sensitive file reads from network sends.

In Section 3, we elaborate on how these novel delay and spoofing

techniques can empower existing exploits to hinder provenance

analysis. In Section 4, we formalize the threat model based on our

attack techniques and then our proposed defense is presented in

Section 5.

3 EXECUTION REPARTITIONING ATTACKS
We propose a novel set of techniques for augmenting existing ex-

ploits to hinder defenses and forensic tools reliant on data prove-

nance. Our techniques enable exploits to achieve their original goal

while simultaneously obfuscating the true sequence of attack events

from defenders, making it harder to determinewhere the attack orig-

inated from andwhatwas done to the victim system. The techniques

can be divided into two categories, spoofing and delays, which ma-

nipulate the audit events emitted from the target application prior

to them being recorded by the auditing framework. Consequently,

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3339

x.x.x.x

Web Server
open socket

Bash Netcat

y.y.y.y

open socket

execute execute

close socket
Web Server

execute

provenance

Figure 2: High level example of augmenting an exploit with
spoofing to thwart data provenance. By adding a close socket
system call, the call to execute Bash is partitioned into a dif-
ferent unit, isolating it from the attacker’s exploit.

these techniques cannot be detected with traditional log integrity

defenses [7, 24, 32, 37, 41, 44, 45, 55, 62, 66, 67, 71, 73, 74, 91, 92],

which only detect changes after the logs are committed to storage.

3.1 Spoofing Attacks
Spoofing entails generating artificial system calls and application

log messages in order to forge the necessary audit log events to

satisfy an EUP signature. Typically, the attacker’s exploit begins in

the middle of an execution unit, with events linking the unit back to

an ingress point. Figure 2 shows this for a web server example, with

an open socket system call linking the current unit to the attacker’s

IP address.

Suppose the payload for the exploit is designed to start a reverse

shell connected to a remote machine controlled by the attacker,

thereby granting them access into the system. If the payload were

triggered immediately, data provenance would trivially associate

the resulting execute and open socket system calls to the current

execution unit. Consequently, a system or human analyst wanting

to investigate any of these events can recover the entire sequence

using data provenance. For example, if the Netcat process is ex-

amined, a backward provenance query will reveal the attacker’s

IP address and the request used to compromise the web server.

Similarly, a forward query will reveal the remote server used to

issue commands and any data it exfiltrated.

What would happen if the payload closed the initial socket before
invoking the execute system call? As it turns out, most existing

EUP algorithms for data provenance will mark this as the end of the

current execution unit and partition all subsequent audit log events

into a new unit, as reflected in Figure 2.
5
With the call to execute

Bash now in a new unit, the previously described data provenance

query will not include the attacker’s IP address, nor contain the

request carrying the exploit and payload. In summary, with just

one added system call, the attacker has thwarted the ability for data

provenance to recover the full attack sequence.

While spoofing is conceptually straightforward, signatures can

require many events, all of which have to be spoofed in the correct

order to successfully match a signature. Continuing the previous

example, for a real server like Nginx, simply closing a socket is not

sufficient. There are also dozens of debug messages that have to

be spoofed to create a valid signature. In Section 6, we evaluate an

5
The only exception we know of is BEEP [50] because it instruments programs with

an explicit “end-of-unit” event, however this can also be spoofed to perform the attack.

x.x.x.x Web Server

open socket

Bash Netcat

y.y.y.y

Execution
Unit

close

z.z.z.z

Execution
Unit

Pointer Payload

open socket

execute

Figure 3: High level example of augmenting an exploit with
delaying to thwart data provenance. By corrupting a code
pointer, rather than directly executing the payload, a differ-
ent unit can be exploited into triggering the next stage.

exploit that uses CVE-2009-4769 to target httpd’s tolog method

to conduct a successful attack.

Format string bugs warrant special mention, as they are par-

ticularly powerful for spoofing. For example, CVE-2012-0809 in

sudo can be exploited to yield any string starting with the prefix

“sudo: ”, making it very flexible for matching signatures. Interpreters

that allow scripts to specify format strings (PHP: CVE-2015-8617,

CVE-2016-4071) are also ripe for abuse in this manner.

3.2 Delay Attacks
Rather than forging fake events to create a partition, the attacker

can alternatively augment their exploit to intentionally delay the

manifestation of certain actions to later execution units, covertly

spanning partitions in a way that will not be reflected in the data

provenance. Figure 3 visualizes this at a high level, reusing the web

server as an example. Rather than directly executing the payload,

which would causally link the attacker’s IP address and request

to the resulting reverse shell, the exploit instead corrupts a code

pointer to point to the payload and then exits normally. When a

subsequent (benign) request causes the corrupted pointer to be

dereferenced, it will inadvertently trigger the next stage of the

attack with no audit log events linking it back to the attacker’s

request. This not only decouples the attacker from the payload, but

also frames a benign IP address as being the ingress point.

However, delays do not always require a memory safety vio-

lation. For example, event handling loops in many programs can

encounter situations where a task must be deferred and rescheduled

for handling at a later time (e.g., because a necessary resource is

not yet available). Offline analysis can miss these alternate code

paths during profiling, creating unintended delay attack primitives.

3.3 Crafting Real-World Exploits
Based on our techniques of spoofing and delaying, we present 3

working exploits against real-world programs to encompass the

techniques an adversary can use to exploit repartitioning attacks.

Our exploits are based on known CVEs, extended using our attack

techniques to invoke erroneous data provenance results.

CVE-2013-2028. This CVE stems from a bug in Nginx’s handling

of chunked HTTP requests and can be exploited to cause an out-of-

bounds write. We use this to target Nginx with the delay technique.

Specifically, we exploit the original stack overflow to change two

local variables that are then used by the buggy function to perform

a write, creating an arbitrary write primitive. We exploit this in turn

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3340

to corrupt one of the program’s global code pointers, implementing

the delay primitive. To simplify the payload, wemake the program’s

heap executable prior to the attack so that the malicious HTTP

request can carry its own shellcode. In a real-world setting, the

attacker could instead trigger the CVE multiple times to write a

ROP chain into memory that corrupts the global pointer.

CVE-2004-0541. This CVE stems from a bug in one of Squid’s

remote authentication modules, which can be remotely triggered to

cause a buffer overflow. Our attack augments exploits for this CVE

with the spoofing technique. Specifically, we trigger the overflow

in its NTLM authentication child process to inject and trigger a

ROP chain, which in turn messages the logging daemon via an IPC

channel to print arbitrary log strings. We use this spoof primitive

to forge the necessary messages to complete a valid EUP signature,

ending the current unit and starting a new one, and then trigger

the payload, which is now causally disconnected from the attacker.

CVE-2009-4769. This CVE stems from multiple format string

bugs in httpd, which can be triggered remotely by a HTTP re-

quest to perform arbitrary reads and writes. Specifically, the buggy

logging procedure is intended to record details pertaining to the

incoming HTTP request (timestamp, IP address, requested file, re-

sponse code). However, by exploiting it with the spoof technique,

an attacker can control the write to inject multiple seemingly le-

gitimate entries into the log, thereby partitioning the attack across

several bogus execution units with no causal dependencies. The

exploit can then trigger a payload using arbitrary writes or leak

data back to the attacker without creating a link to the malicious

request.

4 THREAT MODEL & ASSUMPTIONS
Defender. The defender’s goal is to investigate an intrusion with

the aid of a full-system data provenance framework. In order to

handle complex real-world long-running programs, it relies on EUP,

as is the norm [36, 48–50, 56–58]. Conversely, simple short-lived

programs that do not incur dependency explosion can have all their

events grouped into a single partition and do not require further

consideration for this work. In accordance with prior work [36, 48–

50, 56–58], partitioning signatures do not span multiple programs,

so each can be analyzed independently. We assume kernel integrity

and correct ordering of audit data, which are standard prerequisites

in all full-system auditing [36, 48–50, 56–58]. We only consider

EUP attacks and note that our proposed solution is compatible with

existing approaches to offline tamper-evident logging [7, 24, 32, 37,

41, 44, 45, 55, 62, 66, 67, 71, 73, 74, 91, 92].

CFI has some capacity to coincidentally reduce the EUP attack

surface by limiting the range of unexpected control behaviors a
program can exhibit. To account for this, we define a metric for

quantifying attack surface reduction in Subsection 4.1 and perform

a comparison between CFI and our solution in the evaluation. Our

findings show that our design offers more protection than CFI,

against EUP attacks, across all 14 evaluated real-world programs,

eliminating 47,642 additional delay and spoof gadgets per program.

Attacker. The attacker’s primary goal is to take control of a target

program in order to gain a foothold into the victim’s system. For

brevity, we will consider a production server environment where

the attack surface is an internet accessible service, such as a HTTP

server. Since the attacker expects the defenders to be using an

auditing framework that allows for data provenance, he is motivated

to augment the attack with the techniques described in Section 3

to make it as difficult as possible to uncover his activities.

The minimum prerequisite for the attacker to succeed is one

vulnerability in the target program that enables control flow hijack-

ing or arbitrary write, along with knowledge of the EUP algorithm

being used and a copy of the target program so he can know the

partitioning signatures in advance. However, to demonstrate the

strength of our proposed defense, we will consider a significantly

more powerful adversary who has a complete local copy of the

victim system and access to an arbitrary read vulnerability in the

target program, granting him complete knowledge of the remote

program’s state and the ability to refine his attack to work on the

first try, guaranteed. By demonstrating that our defense is able to

correctly recover the complete attack provenance of this powerful

adversary, we also demonstrate the ability to handle weaker, more

realistically constrained attackers.

4.1 Quantifying EUP Attack Surface
In order to quantify the surface for EUP attacks and facilitate objec-

tive comparisons between defenses, we propose a newmetric called

Partitioning Attack Surface (PAS). The intuition behind PAS is to

quantify how many audit-event-producing sites (e.g., system calls,

application log writing procedures) are reachable from any point

in the program based on the policy being enforced by integrity

defenses. The more sites that are reachable from the current point

in the execution, the more events an attacker can choose from to

match a signature.

To measure PAS in real-world programs efficiently, given a graph

model representing the enforced policy, we define audit-event-

producing sites as nodes that invoke either a system call or write

library function (e.g., printf). Thus, for each node 𝑛 in policy 𝑁

and node 𝑒 in the set of audit-event-producing nodes 𝐸, PAS is

defined as: ∑
𝑛∈𝑁,𝑒∈𝐸 𝑟 (𝑛, 𝑒, {𝐸 − 𝑒})

|𝑁 | (1)

where 𝑟 is a function that returns 1 if 𝑒 is reachable from 𝑛 without

going through any other node in 𝐸 (i.e., {𝐸 − 𝑒}) and returns 0

otherwise. This check is relevant because going through another

node in 𝐸 produces a side-effect that the attacker does not desire.

Ultimately, higher PAS values reflect a weaker defense that grants

greater flexibility to the attacker.

5 DESIGN & IMPLEMENTATION
The high level idea of MARSARA is to use control flow data and

knowledge of event-producing code locations (i.e., what messages

or system call parameters they can produce) to validate unit signa-

ture matches. Figure 4 shows our proposed design, which similar to

prior work in EUP [36, 49, 58] consists of an offline profiling phase,

an online auditing phase, and a post-forensic analysis.

During offline profiling, MARSARA records and analyzes PT

traces of the target program, using a binary symbolic analysis,

to identify important control and data flows along with possible

starting points for execution units (Subsection 5.2).

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3341

Offline Profiling Online Auditing

P
os

t-
F

or
en

si
c

A
n

al
ys

is

App
Binary Model

Process
Threads

User Space

Intel PT
Trace

Audit
Logs

Event Log
Messages

Kernel Space

Expected
Event

Sequence

Actual
Event

Sequence

Matches?
Warning

Partitioned
Provenance Graph

No Yes

Figure 4: MARSARA architecture overview. An offline pro-
filing phase yields a model of expected program behavior,
which is used alongside execution traces and audit logs col-
lected during online auditing to perform verified partition-
ing in post-forensic analysis.

During online auditing, MARSARA records the program’s

execution and stores it alongside the traditional audit log of system

calls and application log messages (Subsection 5.3).

Lastly, during post-forensic analysis, MARSARA compares

the recorded trace against the resulting audit log events to validate

each occurring event (Subsection 5.4) and then uses these verified

events to determine where to place partitions, yielding verified

execution units (Subsection 5.5).

At first glance, this approach may seem too restrictive and false

positive prone (i.e., rejecting of valid events) to be usable in real-

world systems, however it works because:

(1) The cost of a false positive is low, merely reintroducing an

unnecessary dependency back into the data provenance.

(2) Since all EUP work is based on offline profiling [36, 49, 58],

no such system can guarantee that signatures are complete

in the first place, and yet have demonstrated value in making

data provenance usable for real-world systems [34].

Ultimately, MARSARA is effective if it preserves attack provenances

while having a false dependency reduction and performance com-

parable to previous (insecure) systems.

In this work, we focus on demonstrating the ability forMARSARA

to ensure integrity using verified events and execution unit sig-

nature matches, as opposed to proving that our EUP algorithm

is the most accurate. Readers interested in the latter topic should

refer to OmegaLog [36], which implements and evaluates a similar

partitioning strategy (without integrity verification).

5.1 Intel Processor Trace
Before diving into the phases of MARSARA, it is important to under-

stand how PT works, since we intentionally design our solution to

be compatible with it for better performance. PT enables MARSARA

to securely audit the basic blocks executed by user space programs

and can be controlled with a kernel driver, which we implement

as part of MARSARA. For brevity, we will focus on how Intel’s

implementation of PT works, which is the architecture supported

by our prototype, however our design can be generalized to other

PT implementations as well.

When a program for which MARSARA has a model is loaded

for execution, it configures Intel PT to trace the execution. The

MARSARA kernel maintains per-thread trace buffers, redirecting

PT’s data output appropriately during context switches. Anytime a

branching or indirect control transfer instruction occurs, PT records

an event packet with the outcome. For branches, the packet is a

single taken-not-taken (TNT) bit, whereas for indirect transfers (in-

direct call, indirect jump, and return), the target instruction pointer

(TIP) is recorded. The Intel PT hardware automatically applies com-

pression to the written packets to conserve space.

At the start of execution, the MARSARA kernel driver takes a

snapshot of the program’s executable pages and then any additional

pages loaded into memory afterwards (e.g., mmap) are also captured

and recorded. This also includes dynamically generated code, such

as just-in-time (JIT) compilation. The resulting sideband data con-

sisting of the initial snapshot, subsequently mapped executable

memory, and context switch events, are interwoven with the PT

data in the thread buffers to yield a linear stream of data.

Each stream contains all the necessary data to recover the pro-

gram’s execution, down to individual instructions, with the help

of a disassembler. However, as we will explain in Subsection 5.2,

not every instruction needs to be recorded for auditing, so to con-

serve space we distill the instruction sequences using kernel worker

threads into relevant events and metadata centered around basic

blocks. Since the PT data is not needed until the post-forensic

investigation phase, the workers process data asynchronously to

minimize overhead.

Intel PT is only configurable in the root CPU privilege level

using model specific registers (MSRs) and writes directly to physi-

cal memory. This allows the kernel to prevent all user space pro-

grams from reading or tampering with the trace. It also bypasses

CPU caches, eliminating potential side channels and effects on the

program’s performance. When the trace buffer is almost full, a

non-maskable interrupt (NMI) is raised, allowing the contents to

be flushed without any data loss. As a result, systems leveraging

Intel PT have demonstrated low performance overheads (under

7% [27, 39, 90]) and are capable of offering strong security integrity

guarantees [27, 90].

5.2 Offline Profiling
In the offline phase, we propose to overcome the challenge of ac-

curately determining a program’s control and data flows by using

a combination of concrete traces and symbolic analysis. Specifi-

cally, MARSARA reads a target binary and generates a model of

the program consisting of the possible paths between application

log events, systems calls, and function/loop heads. Formally, given

a binary 𝑏, MARSARA generates a graph 𝐺 =< 𝑉 , 𝐸 > where 𝑉 is

a subset of 𝑏’s basic blocks, and 𝐸 = 𝑉 ×𝑉 is a set of edges such

that (𝑢, 𝑣) ∈ 𝐸 if there exists a path from 𝑢 to 𝑣 in 𝑏’s control flow.

System call and application log event nodes then get annotated

with regular expressions defining their possible data values, calcu-

lated using binary single-path symbolic execution over the profiled

traces. We use angr [76] for our Linux prototype.

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3342

Algorithm 1: Model generation in MARSARA

1 Func BuildModel

Inputs :Binary 𝑏
Outputs :Model𝐺

2 F ← GetLoggingProcedures(𝑏)

3 𝑉 ← ⋃
𝑓 ∈F

GetCallSites(𝑏, 𝑓)

4 𝑉 ← 𝑉 ∪ 𝑏.libc_calls ∪ 𝑏.function_heads ∪
𝑏.loop_heads ∪ 𝑏.function_returns

5 foreach 𝑣 ∈ 𝑉 do
6 𝑣.rva← CalculateRVA(b, v)
7 if 𝑣 is log call site then
8 𝑣.logstring← GetLogFormatString(b, v)
9 else if 𝑣 is loop head then
10 𝑣.is_infinite_loop← HasNoExitEdges(b, v)

11 𝐸 ← {(𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉) | ∃ path 𝑢 → 𝑣 in 𝑏 }

Algorithm 1 shows the steps to produce a model in more detail.

First, MARSARA identifies the set F of logging procedures that

produce application level messages. Then, using a first pass on the

binary’s CFG, derived from profiled execution traces, MARSARA

captures the basic blocks that end in a call to any function in F .
Next, MARSARA collects all basic blocks that correspond to heads

of functions/loops and blocks that lead to system calls. In practice,

we find that applications rarely make direct system calls, relying

instead on standard libraries (e.g., libc) that expose equivalent

user APIs. To account for this, MARSARA also collects all calls

to functions in libc and analyzes them to determine the possible

system calls they can emit.

To accurately map these basic blocks to events received from

PT and audit logs, MARSARA needs to collect further metadata

about them. MARSARA first tags each node 𝑣 ∈ 𝑉 with its corre-

sponding type: log, system call, function head, loop head, standard

library call. Then, MARSARA calculates the node’s relative virtual

address (𝑣 .rva), which corresponds to 𝑣 ’s offset from the binary’s

base virtual address. RVAs allow MARSARA to recognize addresses

reported by PT, which are absolute addresses affected by address

space layout randomization (ASLR). For each node 𝑣 that is a call

site to a logging procedure, MARSARA uses symbolic execution to

produce constraints that are then recorded as the log message’s for-

mat specifier (𝑣 .logstring). This is essentially a regular expression
of all messages this code location is expected to produce. Finally, to

be able to identify execution units (Subsection 5.5) during the later

post-forensic analysis phase, MARSARA marks all function and

infinite loop heads. We consider such nodes to be possible candi-

dates for starting new execution units since they often correspond

to event-handling routines. While this is a heuristic, it has been

well studied and considered reliable, appearing in many prior EUP

systems [36, 49, 58].

5.3 Online Auditing
At runtime, MARSARA leverages PT to capture low level execution

events alongside traditional audit logs of system calls and applica-

tion level log messages. PT provides a hardware-enforced record of

the program’s control flow, application log messages reflect data

flow, and system calls capture OS events. We pick these sources

because they are generated by different layers of the environment

(hardware, application, kernel) and are correlated. This provides
MARSARA a rich perspective from which to verify consistency.

Hardware Processor Trace. Pure software solutions for record-
ing runtime execution suffer from high performance overhead and

weak security guarantees. PT is a hardware mechanism designed

to address this by efficiently and securely capturing instructions as

they are executed in the CPU. Intel’s implementation has been in-

cluded in their processors since 2015, making it a prevalent feature

in most computing environments. Although we use Intel’s imple-

mentation (Subsection 5.1) in MARSARA, our design generalizes to

other PT hardware as well.

Application Layer Events. At runtime, audited programs are

loaded with an instrumented standard library that augments the

write call, as is typical of prior EUP designs [36]. In addition to

writing to the original destination, the new call also forwards mes-

sages to the framework used to record system calls. Most stan-

dard auditing frameworks (e.g., auditd) provide an API with this

functionality. To simplify the segmentation of messages during

post-forensic analysis, the instrumented write also appends the

process/thread IDs and current timestamp to the sent messages.

Although the event logging frameworks used by user space

programs are diverse and heterogeneous, the vast majority rely on

standard runtime libraries (e.g., libc) to efficiently write logs while

preserving portability across systems. MARSARA takes advantage

of this to capture log messages that indicate various states in the

execution units. A more detailed discussion of supporting hetero-

geneous logging frameworks is presented in prior work [36] and

we discuss our prototype’s compatibility with other programming

languages with alternative standard libraries in Section 7.

System Calls. Recording for system calls and their parameters are

provided by the auditing frameworks MARSARA integrates with,

which also include an API for MARSARA to forward application

log messages into. For our prototype, we use Linux Audit.

5.4 Signature Match Validation
During the post-forensic analysis phase, MARSARA performs two

tasks, starting with cross-validation of events received from PTwith

those from the audit logs, based on the model generated offline

in Subsection 5.2. This yields validated audit events that will then

be used to produce verified execution unit partitions, which we

describe in Subsection 5.5.

Algorithm 2 formalizes our cross-validation matching. It takes

three inputs: the generated model 𝐺 , a PT trace T , and an audit

log A of system calls and application log messages. For each event

𝑒 received from the PT trace, MARSARA first determines if it is

a system call event or a code block event. If it is a system call,

MARSARA extracts 𝑒’s call number and checks that it matches the

number on the next event received from the audit log. If the two

numbers do not match, then the event is invalid and discarded.

Next, if the system call originates from a code block that is

either in libc or the application’s binary, MARSARA obtains the

corresponding node in𝐺 that matches the event node’s RVA. It then

validates if the path observed so far matches at least one known

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3343

Algorithm 2: MARSARA’s trace validation algorithm.

1 Func ValidateTraces
Inputs :Model𝐺 , PT Trace T , Audit Trace A, binary 𝑏

Outputs :Validated Events Path P, WarningsW
2 W ← {Φ} , P ← {Φ}

/* 𝜔 is the last matched node */

3 𝜔 = Φ

4 foreach event 𝑒 ∈ T do
5 if 𝑒 is system call then
6 𝑎 ← GetNextEvent(A)
7 if 𝑒.syscall_num = 𝑎.syscall_num then
8 P ← P ∪ {(𝑒, 𝑎) }
9 else
10 W ←W ∪ {(𝑒, 𝑎, critical) }

11 if 𝑒.object ∈ {libc, 𝑏 } then
12 𝑢 ← GetNodeByRva(𝑒.rva)

13 𝜔 ← ValidateEANode(𝑒,𝑢, 𝑎)

14 else
15 𝑢 ← GetNodeByRva(𝑒.rva)

16 𝜔 ← ValidateEANode(𝑒,𝑢,Φ)

17 Func ValidateEANode
Inputs :PT event 𝑒 , nodes 𝜔 , 𝑢, Audit event 𝑎

Outputs :Last matched node

18 match← 𝑒 is application log event ∧
MatchLogString(𝑎.logmessage,𝑢.logstring)

19 if match ∨ (𝑒 is code block) then
20 if (𝜔,𝑢) ∈ 𝐸 then
21 P ← P ∪ {(𝑒, 𝑎,𝑢) }
22 return 𝑢

23 else
24 if ℓ (𝑢) ∈ {function head} ∨ ℓ (𝜔) ∈ {function return}

then
25 W ←W ∪ {(𝑒, 𝑎,𝑢, low) }
26 P ← P ∪ {(𝑒, 𝑎,𝑢) }
27 return 𝑢

28 else
29 W ←W ∪ {(𝑒, 𝑎,𝑢, critical) }
30 return Φ

31 else
32 W ←W ∪ {(𝑒, 𝑎,𝑢, critical) }
33 return Φ

signature. Non-system call PT events (i.e, loop heads, function

heads, and returns) are treated in a similar manner.

To check for path validity, MARSARA keeps track of the last

matched node in the current observed trace. If the newly matched

node 𝑢 is an application log node, MARSARA extracts the node’s

format specifier (𝑢.logstring) from the model, and confirms that

it matches the concrete message recorded in the audit log. If a

discrepancy is found, the match is invalidated.

When the log matching succeeds, or alternatively, if 𝑢 is simply

a code block, MARSARA checks if there exists an edge (𝜔,𝑢) ∈ 𝐸
between the last matched and current node. If it exists, MARSARA

considers the path to be valid and updates that last matched node

to be 𝑢. If a discrepancy is found, it is invalidated.

Warning Types. When MARSARA detects invalid events, it

records warnings of two severity levels: low and critical. Currently,

warnings are intended only to provide verbosity so we can em-

pirically evaluate MARSARA’s accuracy. They do not need to be

considered by investigators and we leave the possibility of using

them to aid in investigations to future work.

The severity is based on what kind of discrepancy is detected in

the model. In benign experiments where no attack is occurring, if a

direct code branch causes a warning, it is ranked low because this

is due to a missed path during offline profiling and can be resolved

using more data. Recall that all prior work also relies on offline

profiling and therefore cannot guarantee completeness.

Conversely, if the inconsistency (in benign experiments) arises

from indirect transfers (indirect jump, indirect call, return), it is

ranked critical since this is a limitation in the symbolic analysis used

during offline profiling. This represents a limitation that cannot be

resolved with more data, which is why we differentiate it from low

warnings. Fortunately, as we demonstrate in our evaluation, these

are rare, meaning that our design is effective overall.

5.5 Execution Partitioning
MARSARA’s partitioning logic relies on the observation that de-

velopers of long-running processes create log messages for the

important events in each execution unit’s lifecycle. For example,

for a web server that handles user requests, it is customary for

developers to log the user’s request at the start of each unit. Such

log messages often reside at the start of an event-handling function

(typically a function pointer) or an infinite loop, which is why our

binary analysis in Subsection 5.2 labeled them explicitly.

However, determining which log messages signal the start of

a new execution unit without semantic analysis of the message’s

content is a challenging task. To overcome this, we combine infor-

mation about loops and functions from the offline profiling phase

with runtime information about log messages to uncover the heads

of execution units.

As discussed in Section 5.2, MARSARA assigns each code block

𝑣 with a label ℓ (𝑣) indicating whether 𝑣 is an infinite loop or the

head of a function. Such blocks become candidates for starting new

execution units. MARSARA keeps a running count of the number

of times a log messages has been encountered in a priority queue.

The intuition behind this approach lies in the observation that appli-

cation developers, in an effort to reduce the performance overhead

of logging, restrict the log messages to important events, the most

important of which is the servicing of a new input. Therefore, the

log message at the top of the priority queue (i.e., the one with the

largest count) likely corresponds to the head of an execution unit.

Every time that message is encountered, MARSARA performs a

backward search in the current trace and identifies the closest code

block that is either an infinite loop head, or the head of a function

with no incoming edges in the model. MARSARA then creates a

new execution unit starting from that block and adds all subsequent

events to the new unit.

6 EVALUATION
We evaluate MARSARA with an emphasis on answering the fol-

lowing research questions:

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3344

Table 1: Performance, accuracy, and storage overhead of MARSARA. Time captures the seconds to analyze and validate events.
Baseline storage corresponds to running the Linux Audit framework and application log tracking without MARSARA. The
low warnings are categorized by the model edge type for additional granularity.

Program
Model Total

Events
Time
(sec)

Warnings Storage (MB)

Blocks Edges Low Critical FPR Baseline MARSARAForward
Edges

Backward
Edges Other

cupsd 4,768 32,521 15,592 0.109 1 20 0 0 0.13% 0.218 0.067

HAProxy 28,837 188,422 69,009 0.241 131 264 11 5 0.59% 0.141 0.244

httpd 7,087 25,465 419,532 1.237 187 226 0 6 0.09% 0.433 1.613

lighttpd 5,680 24,862 508,707 0.967 179 134 5 3 0.06% 0.277 2.436

memcached 38,427 200,041 4,282 0.082 82 32 7 0 2.82% 0.300 0.219

nginx 15,675 99,924 175,239 0.511 265 326 2 0 0.33% 0.310 0.722

postfix 146,296 476,904 2,968 0.043 28 2 5 2 1.24% 0.898 0.010

Proftpd 10,918 70,767 3,050,246 15.214 305 229 4 0 0.01% 0.630 11.181

Redis 28,881 161,294 2,681,711 21.357 334 416 3 0 0.02% 0.483 15.007

squid 32,516 109,804 116,100 0.436 170 118 2 0 0.24% 0.652 0.583

thttpd 32,725 203,385 12,589,818 22.361 48 17 6 4 0.00% 0.206 33.681

Transmission 7,045 27,765 173,705 0.397 236 154 80 1 0.27% 0.282 0.031

wget 6,979 49,028 17,624 0.048 74 63 1 0 0.78% 0.095 0.088

yafc 3,621 18,981 31,170 0.318 60 39 5 2 0.33% 0.114 0.105

(1) What is MARSARA’s accuracy when validating the integrity

of partitions? We measure its accuracy in terms of the num-

ber of warnings generated over benign inputs in 14 real-

world programs and show that only 2.82% of false dependen-

cies are reintroduced at worst.

(2) How much does MARSARA reduce the vulnerability of pro-

grams to EUP attacks compared to CFI alone? We measure

PAS for the same real-world programs while being pro-

tected by MARSARA, shadow stack, and function-level CFI.

MARSARA removes 47,642 more gadgets per program.

(3) Can MARSARA prevent execution repartitioning attacks

based on the techniques from Section 3? We attack sev-

eral programs using expertly crafted exploits and find that

MARSARA successfully preserves the full attack provenance.

(4) What is the cost of MARSARA’s forensic analysis? We mea-

sure the overhead for the real-world programs and the SPEC

CPU 2006 benchmark compared to a standard auditing frame-

work and find it to be 8.7%, on average.

Experimental Setup. We evaluate MARSARA using 14 popular

real-world applications. These programs have frequently been used

to evaluate prior work [36, 49, 50, 58, 59], justifying their inclusion.

We use the default configurations and generate workloads with

standard benchmark tools, such as Apache Benchmark [26]. We

also evaluate against the SPEC CPU 2006 benchmark, with full

workloads, for direct comparison with prior work.

For practical binary CFI defenses, we consider shadow stack

and function-level policies, which are realistic to enforce without

source code. Shadow stack prevents control flow hijacking from

arising via corrupted return pointers whereas function-level CFI

additionally enforces that indirect calls and jumps must target the

start of a valid function. More accurate policies have been proposed,

but have not seen real-world deployment due to requiring source

code, being incompatible with mechanisms like stack unwinding,

and/or having overheads upwards of 47% [39].

We conduct our tests on a server-class machine with an Intel

Core(TM) i7-6700K CPU @ 4.00GHz and 16GB of memory, run-

ning Debian 10. Audit logs are collected using Linux Audit with

rules covering the most commonly used system calls, such as read,

write, and execve (23 in total).

Definition of Errors. For the purposes of this evaluation, a false
positive is defined as a legitimate audit event that is accidentally

detected during MARSARA’s integrity check, yielding a warning,

and a false negative is a spoofed or delayed event that is not. In terms

of the resulting provenance graph, a false positive may introduce a

false dependency edge whereas a false negative may remove a true

dependency edge.
6

Calculations. Overhead is calculated as (𝑃 − 𝐵)/𝐵 where 𝐵 is the

baseline performance value and 𝑃 is the value with the evaluated

system enabled. False positive rate (FPR) for Table 1 is calculated as

the sum of all warnings divided by total events. We do not report

the time to produce models since this is only done once per program

during the offline phase.

6.1 Partition Validation Accuracy
Table 1 shows the performance and accuracy of MARSARA’s anal-

ysis for validating the execution partitions. As expected from Al-

gorithm 2, the time to validate is linear to the number of events

recorded. In the largest observed case (12 million events, thttpd),

MARSARA analyzes and validates the trace in less than 30 sec-

onds. This is reasonable since verification is only required once per

trace and is not performed until an investigation occurs (i.e., the

post-forensic analysis phase).

We also report the number of events yielding false positive

warnings (FPs) during verification. For 8 of the 14 applications,

6
Notice that if a false positive happens to be a true dependency, the graph is unaffected,

and if a false negative fails to forge a signature match, the graph is also unaffected.

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3345

Table 2: PAS for several real-world programs and defenses.

Program ICTs None SS Func. MARSARA

cupsd 4,017 19.42 8.62 8.59 8.33
HAProxy 13,155 2.49 2.18 2.18 2.11
httpd 1,779 40.00 12.14 12.02 9.41

lighttpd 2,858 0.18 0.13 0.13 0.13
memcached 797 2.82 1.10 1.02 0.89

nginx 3,997 0.80 0.37 0.37 0.28
postfix 848 16.00 10.28 9.75 9.42
Proftpd 34,830 2.18 0.82 0.81 0.72
Redis 28,047 7.09 5.37 5.34 5.06
squid 18,412 353.00 196.03 181.11 123.94
thttpd 1,198 1.02 0.14 0.14 0.11

Transmission 17,507 2.89 1.83 1.82 1.75
wget 16,594 6.71 0.85 0.71 0.64
yafc 8,590 0.85 0.64 0.63 0.62

Average: 10,902 32.53 17.18 16.04 11.67

MARSARA reports no critical FPs, meaning that the symbolic anal-

ysis used during the offline profiling phase works well on the eval-

uated programs. For the remaining programs, the FPs are <6, high-

lighting only a few troublesome model edges.

FPs occur mainly for two reasons: due to limitations in binary

symbolic analysis and inaccuracies in reporting system calls. In

some cases, MARSARA detects system calls that do not map back

to nodes in the model. For example, in Transmission, unexpected

openat system calls are recorded. Investigation reveals that the

function tr_variantToFile makes a call to the libc method

mkstemp. However, when examining the model, we did not find

a node for this method, indicating that symbolic execution was

not able to analyze it. We further investigated the source code for

mkstemp in glibc and observed that it is replaced by the compiler

with a function called __gen_tempname7. These kinds of optimiza-

tions are not currently handled by the verification algorithm, but

will be addressed in future versions.

We also report the number of events yielding low severity warn-

ings, which arise in direct branches not covered by the profiling

traces we collected during the offline phase. For additional clarity,

we categorize these into forward graph edges (calls, jumps), back-

ward edges (return), and other (unexpected audit log events). The

evaluated programs yield between 10 and 600 low warnings, which

we explain the impact of next.

Since this experiment does not contain any exploits, all gener-

ated warnings are false positives, i.e., legitimate events wrongly

detected by MARSARA’s integrity check. This is presented in the

table as FPR, calculated as the number of warning-producing events

(low and critical) divided by the total number of events. In all cases,

FPR is 2.82% or lower. Recall that if a false positive pertains to a

false dependency, it will be preserved in the resulting provenance

graph as an edge rather than being removed during partitioning. A

false positive detection of a true dependency is of no consequence,

since it would not have been removed anyway. Consequently, FPR

is also the maximum number of false dependencies that can be

reintroduced into the graph. For example, if the ideal partitioned

provenance graph for a given query contains 1,000 dependencies

7
Observed in glibc/misc/mkstemp.c at line 33.

(edges), the resulting graph with a FPR of 2.82% could contain up to

1,028 edges (28 false dependencies), presenting little difference to

analysts or downstream systems. In short, MARSARA almost com-

pletely preserves the false dependency reduction of prior (insecure)

EUP techniques with the added benefit of integrity.

6.2 Partitioning Attack Surface Reduction
Table 2 presents MARSARA’s PAS for the real-world programs

compared to the unprotected binaries and several practical binary

CFI policies, along with the number of indirect control transfers

(ICTs) in each program. Recall from Subsection 4.1 that smaller

values equate to greater protection against EUP attacks.

Across all measured programs, MARSARA’s PAS is better than

any of the CFI defenses. Since most programs contain over 1,000

ICTs, even small reductions in PAS are significant. For example,

MARSARA reduces Proftpd’s PAS by 0.09 versus function-level

CFI, which over 34,830 ICTs equates to eliminating 3,134 events

that an attacker could otherwise leverage to spoof EUP signatures.

In the simpler programs, the benefits are more modest. For exam-

ple, lighttpd gains little added protection from MARSARA, or

function-level CFI for that matter, due to not having any indirect

calls or jumps. The biggest benefit is observed in Squid, where its

modular design presents the opportunity for MARSARA to reduce

PAS by 57.17 over function-level CFI, eliminating over 1,052,614
event gadgets. On average, 47,642 additional gadgets are removed

compared to function-level CFI. In short, MARSARA successfully

eliminates thousands (and sometimes millions) of options for an

attacker attempting to spoof an EUP signature, even in programs

already protected by binary CFI.

6.3 Attack Investigation
To evaluate MARSARA’s integrity, we use the expertly crafted

exploits described in Subsection 3.3 to attack real-world programs.

Specifically, we first run EUP without PT or MARSARA’s partition

verification (essentially placing partitions as prior systems would,

creating a baseline for comparison) to confirm that the exploits

produce valid (malicious) signatures for partitioning. As expected,

all 3 attacks successfully manipulated prior EUP algorithms into

fragmenting the attacker’s exploit and resulting symptoms across

disjoint partitions. In short, withoutMARSARA, provenance queries

made by investigators will be answered with seemingly legitimate

(but actually misleading and incomplete) results.

We then rerun the attacks, now with MARSARA. In the 2 control

hijacking cases (CVE-2013-2028, CVE-2004-0541), we observe criti-

cal warnings at the point where the exploits redirect control of the

execution. For CVE-2009-4769, the critical warning arises because

the model reveals, based on the call site to the logging method,

that the resulting message in the audit log contradicts the expected

format. Consequently, MARSARA does not fragment the attacker’s

network requests from the rest of the symptoms, yielding com-

plete provenance attack graphs that contain all the relevant events.

For example, for CVE-2013-2028, which pertains to our motivating

example originally visualized in Figure 1, MARSARA’s partition

includes both the events pertaining to x.x.x.x and y.y.y.y. In
short, this experiment yields no false negatives.

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3346

tht
tpd

lig
htt

pd

tra
ns

miss
ion

ha
pr

ox
y

ng
inx htt

pd
red

is

po
stf

ix

mem
ca

ch
ed

sq
uid ya

fc
cu

ps
d

wge
t

pr
of

tpd

0%

4%

8%

12%

16%

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Figure 5: Performance overhead for the real-world pro-
grams. The average is 8.7%.

6.4 Runtime & Space Overhead
Real-World Programs. We report the storage requirements for

MARSARA’s analysis in the last two columns of Table 1. Our base-

line represents the amount of compressed data needed to store

the events generated by the Linux Audit framework. We compare

that to the amount of extra storage (also in compressed form) that

MARSARA requires for PT.

For 9 of the 14 applications we evaluated, MARSARA’s storage re-

quirement is in the same order as the baseline (e.g., 1.6 MB for 500K

events in the case of httpd). However, for each Linux Audit trace,

the corresponding PT trace can be discarded after MARSARA’s

validation is completed. This renders the PT storage overhead as

only a temporary cost.

For 3 applications (thttpd, Proftpd, and Redis), a large num-

ber of PT events are generated, requiring significantly more tem-

porary storage. Investigating further, we discover that MARSARA

reports on events pertaining to several loop blocks engaged in

“busy-waiting” behavior for initializing large arrays. For example,

thttpd creates an array for storing all the possible file descriptors

(1024 in our evaluation environment) and then initializes each ele-

ment to −1. Consequently, every time this code block is executed,

PT records a path consisting of 1024 blocks, significantly increasing

the number of events generated. We discuss possible solutions to

PT’s storage requirements in Section 7.

Figure 5 shows MARSARA’s runtime overhead compared to

the baseline of Linux Audit framework with no PT event tracking.

MARSARA’s average runtime overhead is 8.7%, which is consis-

tent with prior PT systems [27, 39, 90]. The overhead observed

varies depending on the profiled application’s behavior. For ex-

ample, applications that are mostly IO-bound, such as caching

servers (memcached, squid), file, mail, printing servers (proftpd,

postfix, and cupsd), and key-value stores (redis) exhibit low

runtime overhead, ranging from 1% for proftpd to 9% for Redis.

Conversely, applications that are more CPU-intensive, such as web

servers and load balancers, incur a larger overhead (up to 17% for

thttpd) since PT yields more events. We will consider alterna-

tive methods to reduce PT’s runtime overhead for CPU-intensive

applications in future work.

SPEC CPU 2006. To provide an additional standard benchmark

for comparison, we also report the performance overhead of mon-

itoring the SPEC CPU 2006 benchmark programs over all pro-

vided workloads, visualized in Figure 6. Across the SPEC programs,

MARSARA yields an average performance overhead of 7.21%, which

is consistent with the results from monitoring the 14 real-world

programs that are typically used in provenance system evaluations.

However, we also note that some of the SPEC programs produce

noticeably higher overhead due to the amount of PT data they pro-

duce. This is to be expected since the benchmark is designed to

stress CPUs, making the workloads CPU-bound, whereas the other

programs we evaluate are mostly I/O-bound. We believe the non-

SPEC workloads are more representative of the programs an EUP

attack would target, so we conclude that the SPEC performance

results are tolerable.

7 DISCUSSION

Improving Model Accuracy. The current MARSARA proto-

type relies on binary single-path symbolic execution to gener-

ate the model during offline profiling. This results in an under-

approximated set of paths. Although we consider improving the

state of binary analysis to be outside our scope, several possible

solutions exist to improve its accuracy.

For example, because MARSARA already records the full PT

trace and system call audit for protected programs, it is possible to

use the collected data to guide an offline replay. Specifically, when

MARSARA encounters an inconsistency due to a missing edge in

the model, an existing record and replay (R&R) system [25, 42, 64]

can re-execute the program offline with additional instrumentation

(e.g., Valgrind [82]) to detect the presence of memory corruptions

and then refine the model appropriately. Although memory-safe

R&R is expensive, the cost would be paid in an offline analysis and

each newly encountered path would only need to be tested once.

In time, the model would converge to the ground truth graph with

a priority towards refining execution paths actually observed in

real-world executions.

We also note that symbolic execution does not scale to all pro-

grams, particularly complicated ones like web browsers. However,

by evaluating a prototype that uses application message and system

call auditing, designed as an extension of the most recent work, we

demonstrate that our approach of using PT and binary symbolic

analysis to verify signatures can benefit the security of all EUP-

dependent systems, not just our prototype. We also demonstrate

that even in its current form, MARSARA protects logs derived from

important web services.

Improving Storage Overhead. While most of the tested binaries

produce audit logs comparable in size to the baseline system consid-

ered in Section 6, we encounter some cases where sizes are an order

of magnitude larger. We discover the cause of this phenomenon

to be non-blocking event loops (i.e., “busy waiting”), which yield

many control flow events of little significance (i.e., checking a flag

and then returning to the loop head). This can be addressed as the

PT trace is decoded by summarizing loops or using compression tai-

lored to our problem context. Note that decreasing the PT trace size

will also benefit performance, since less data has to be processed.

In a similar vein, while our PT-enabled kernel is capable of

tracing programs with dynamically generated code (e.g., JIT in

browsers), doing so is likely to yield higher performance overhead

as each generated code page has to be captured in the sideband

data. We leave these optimizations to future work.

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3347

43
7.l

es
lie

3d

43
5.g

ro
mac

s

47
3.a

sta
r

44
5.g

ob
mk

45
0.s

op
lex

43
6.c

ac
tus

ADM

48
3.x

ala
nc

bm
k

46
2.l

ibq
ua

ntu
m

45
9.G

em
sF

DTD

44
7.d

ea
lII

45
3.p

ov
ray

45
4.c

alc
uli

x

40
3.g

cc

46
4.h

26
4r

ef

48
1.w

rf

47
1.o

mne
tpp

43
4.z

eu
sm

p

45
6.h

mmer

48
2.s

ph
inx

3

40
0.p

erl
be

nc
h

45
8.s

jen
g

46
5.t

on
to

41
0.b

wav
es

40
1.b

zip
2

42
9.m

cf

41
6.g

am
es

s

47
0.l

bm

44
4.n

am
d

43
3.m

ilc

Ave
rag

e

Geo
metr

ic
M

ea
n

0%

10%

20%

30%
P

er
fo

rm
an

ce
 O

ve
rh

ea
d

Figure 6: Performance overhead for the SPEC CPU 2006 benchmark. The average is 7.21% and the geometric mean is 3.81%.

Compatibility with Other Languages. MARSARA’s reliance

on an instrumented libc means it will not be able to capture

application messages for all possible Linux programs. However,

fixating on this detail overlooks two points that are more significant.

First, our prototype’s EUP signatures contain messages and system

calls. Even when the former is unavailable due to compatibility,

the latter can still be used to identify units of execution, albeit at

a coarser granularity. EUP is still valuable in such cases [49, 56].

Second, the purpose for including application messages in our

design is to demonstrate the flexibility of our modeling to serve a

wide range of analyses that require EUP, not just those reliant on

one data source (e.g., system calls).

Compatibility with “At Rest” Integrity. In this work, we focus

on protecting log integrity against a novel form of online tampering

based on EUP attacks. This is outside the scope of prior work, which

focuses on tampering performed to data at rest on storage. Our

proposed defense complements the protection offered by these past

solutions and MARSARA can be extended to incorporate them into

a holistic system. For example, solutions based on cryptography

can be readily applied to the data produced by MARSARA, thereby

adding storage integrity. Similarly, MARSARA can control where

data is stored, allowing it to leverage trusted storage solutions like

WORM drives or central logging servers.

8 RELATEDWORK
8.1 Attack Reconstruction
We are the first work to analyze binary events during system-

level provenance collection and solve the challenges associated

with protecting the integrity of EUP signature matches. A lot of

work has been done to leverage provenance for forensic analy-

sis [4, 34, 42, 49, 50, 52, 56–60, 85], network debugging, auditing and

troubleshooting [2, 19–21, 95], alert triage [34, 35], and intrusion

detection and access control [3, 14, 68]. MARSARA complements all

these systems by offering more secure EUP. Finally, our work also

complements the existing EUP systems such as BEEP [50], MPI [58],

and MCI [49], which improve post-mortem analysis by solving the

problem of dependency explosion.

A large amount of research effort has focused on the genera-

tion and use of system call logs in forensic analysis, investigation,

and recovery [5, 29, 46, 47, 70, 84]. However, none of the existing

work focuses on defending post-mortem analysis against execution

repartitioning attacks. Provenance visualization techniques [11, 12]

are also proposed to facilitate causality analysis. MARSARA can

leverage these techniques to provide provenance graph summaries

to admins, accelerating threat investigations.

Several systems [44, 66] have been proposed to detect the tam-

pering of audit logs. Both Custos and SGX-Log use protocols that

leverage Intel SGX and cryptographic data structures to protect

audit log integrity. Several formats have also been proposed in

the literature for storing data in a tamper-evident fashion, such as

history trees [24, 71] and hash treaps [71]. These tamper-evident

systems only detect if certain entries in the audit log are modified

after being committed, which is orthogonal to the online threat we

model in this work.

8.2 Log Deduplication and Compression
Our work is orthogonal to provenance graph compression and dedu-

plication techniques [17, 22, 86], since they compress the prove-

nance graph instead of defending against EUP attacks. Many ap-

proaches [3, 6, 8, 22, 28, 33, 56, 57, 59, 78, 86, 87] are proposed to

reduce the size of audit log for long-term storage and to speed

up after-the-fact forensic analysis. MARSARA can leverage those

techniques to reduce its storage overhead.

LogGC [51] provides offline techniques to garbage collect redun-

dant events that have no forensic value. Similarly, Winnower [33]

and Process-centric Causality Approximation [89] both reduce log

size by over-approximating causal relations. These techniques can

be applied alongside our work to decrease storage overhead. We

can also use these approaches to speed up our analysis.

8.3 Control Flow Bending
Control flow bending is the most prevalent way attackers exploit

memory corruption vulnerabilities. From the attack perspective, we

have seen a rise in sophistication from code injection, to code reuse

(e.g., ret2libc [61]), to what is now the predominate exploitation

technique: return-oriented programming (ROP) [9, 10, 13, 18, 75, 77].

For defenses, we have seen proposals based on randomization, in-

cluding ASLR [69], which have been successfully deployed in com-

mon OSes. Unfortunately, there is still an ongoing battle between

circumvention [30] and better defenses [53, 54].

Another defense is control flow integrity (CFI) [1], which aims to

ensure that the program adheres to a predetermined model, thereby

reducing the attacker’s ability to exploit paths unintended by the

developer. Unfortunately, CFI has only seen limited adoption due

to conflicts between performance and security. Coarse-grained so-

lutions [93, 94] are fast and compatible with existing programs, but

can be bypassed with careful bending [16]. Fine-grained approaches

reduce the attack surface [63, 81, 83], but can still be bypassed, re-

quire source code, or rely on special hardware for performance [39].

In short, there is no ideal CFI solution to date [88].

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3348

In this work, control flow bending is one means by which attack-

ers can conduct EUP attacks, but they can also utilize format string

vulnerabilities and other orthogonal classes of bugs. We are the

first to propose that online exploitation can explicitly target EUP

to hinder forensic investigation. Prior work on bending may evade

CFI, but leave the provenance chain intact, posing no hindrance

on the attack investigation. Even when CFI is already deployed,

MARSARA demonstrates an empirical benefit in terms of PAS.

9 CONCLUSION
This work presents the first formal exploration of online anti-

forensic attacks against data provenance leveraging software ex-

ploits. We demonstrate that attackers can break the causal links in

data provenance graphs used for forensic investigation, and even

frame benign subjects, without triggering existing tamper-evident

logging defenses. We propose MARSARA to verify EUP signature

matches and demonstrate that it resists expertly crafted exploits

while reintroducing no more than 2.82% of false dependencies,

across 14 real-world programs, with a performance overhead of

8.7%. Compared to CFI, MARSARA removes 47,642 more gadgets

per program.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful and infor-

mative feedback. This material was supported in part by the Of-

fice of Naval Research (ONR) under grants N00014-19-1-2179,

N00014-17-1-2895, N00014-15-1-2162, and N00014-18-1-2662, the

Defense Advanced Research Projects Agency (DARPA) under con-

tract HR00112090031, and the National Science Foundation (NSF)

under grants CNS-1750024 and CNS-2055127. Any opinions, find-

ings, conclusions, or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of

ONR, DARPA, or NSF.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow

Integrity. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security.

[2] Adam Bates, Kevin Butler, Andreas Haeberlen, Micah Sherr, and Wenchao Zhou.

2014. Let SDN Be Your Eyes: Secure Forensics in Data Center Networks. In NDSS
Workshop on Security of Emerging Networking Technologies (SENT’14).

[3] Adam Bates, Kevin R. B. Butler, and Thomas Moyer. 2015. Take Only What You

Need: Leveraging Mandatory Access Control Policy to Reduce Provenance Stor-

age Costs. In 7th Workshop on the Theory and Practice of Provenance (Edinburgh,
Scotland) (TaPP’15).

[4] Adam Bates, Wajih Ul Hassan, Kevin R.B. Butler, Alin Dobra, Bradley Reaves,

Patrick Cable, Thomas Moyer, and Nabil Schear. 2017. Transparent Web Service

Auditing via Network Provenance Functions. In 26th World Wide Web Conference
(WWW’17). Perth, Australia.

[5] Adam Bates, Dave Tian, Kevin R.B. Butler, and Thomas Moyer. 2015. Trustworthy

Whole-System Provenance for the Linux Kernel. In Proceedings of 24th USENIX
Security Symposium (Washington, D.C.).

[6] Adam Bates, Dave Tian, Grant Hernandez, Thomas Moyer, Kevin R.B. Butler, and

Trent Jaeger. 2017. Taming the Costs of Trustworthy Provenance through Policy

Reduction. ACM Trans. on Internet Technology 17, 4 (sep 2017), 34:1–34:21.

[7] Mihir Bellare and Bennet Yee. 1997. Forward integrity for secure audit logs.
Technical Report. Computer Science and Engineering Department, University of

California at San Diego.

[8] Y. Ben, Y. Han, N. Cai, W. An, and Z. Xu. 2018. T-Tracker: Compressing System

Audit Log by Taint Tracking. In 2018 IEEE 24th International Conference on Parallel
and Distributed Systems (ICPADS). 1–9. https://doi.org/10.1109/PADSW.2018.

8645035

[9] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.

2014. Hacking Blind. In Proceedings of the 35th IEEE Symposium on Security and
Privacy.

[10] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-

Oriented Programming: A New Class of Code-reuse Attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security.

[11] Michelle A Borkin, Azalea AVo, Zoya Bylinskii, Phillip Isola, Shashank Sunkavalli,

Aude Oliva, and Hanspeter Pfister. 2013. What makes a visualization memorable?

IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2306–
2315.

[12] Michelle A Borkin, Chelsea S Yeh, Madelaine Boyd, Peter Macko, Krzysztof Z

Gajos, Margo Seltzer, and Hanspeter Pfister. 2013. Evaluation of filesystem

provenance visualization tools. IEEE Transactions on Visualization and Computer
Graphics 19, 12 (2013), 2476–2485.

[13] Erik Bosman and Herbert Bos. 2014. Framing Signals - A Return to Portable

Shellcode. In Proceedings of the 35th IEEE Symposium on Security and Privacy.
[14] Frank Capobianco, Christian Skalka, and Trent Jaeger. 2017. ACCESSPROV:

Tracking the Provenance of Access Control Decisions. In 9th USENIX Workshop
on the Theory and Practice of Provenance (TaPP 2017).

[15] Carbon Black. 2018. Global Incident Response Threat Report. https://www.

carbonblack.com/global-incident-response-threat-report/november-2018/. Last

accessed 04-20-2019.

[16] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.

Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow In-

tegrity. In Proceedings of the 24th USENIX Security Symposium.

[17] Adriane Chapman, H.V. Jagadish, and Prakash Ramanan. 2008. Efficient Prove-

nance Storage. In Proceedings of the 2008 ACM Special Interest Group on Manage-
ment of Data Conference (Vancouver, Canada) (SIGMOD’08).

[18] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,

Hovav Shacham, and Marcel Winandy. 2010. Return-Oriented Programming

Without Returns. In Proceedings of the 17th ACM Conference on Computer and
Communications Security.

[19] Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. 2017. One

Primitive to Diagnose Them All: Architectural Support for Internet Diagnostics.

In Proceedings of the Twelfth European Conference on Computer Systems (Belgrade,
Serbia) (EuroSys ’17). ACM, New York, NY, USA, 374–388. https://doi.org/10.

1145/3064176.3064212

[20] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.

2015. Differential Provenance: Better Network Diagnostics with Reference Events.

In Proceedings of the 14th ACM Workshop on Hot Topics in Networks (HotNets’15)
(Philadelphia, PA).

[21] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.

2016. The Good, the Bad, and the Differences: Better Network Diagnostics with

Differential Provenance. In Proceedings of the 2016 ACM SIGCOMM Conference
(Florianopolis, Brazil) (SIGCOMM ’16). ACM, New York, NY, USA, 115–128. https:

//doi.org/10.1145/2934872.2934910

[22] Chen Chen, Harshal Tushar Lehri, Lay Kuan Loh, Anupam Alur, Limin Jia,

Boon Thau Loo, and Wenchao Zhou. 2017. Distributed Provenance Compression.

In Proceedings of the 2017 ACM International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’17). ACM, New York, NY, USA, 203–218. https:

//doi.org/10.1145/3035918.3035926

[23] Catalin Cimpanu. [n.d.]. Hackers are increasingly destroying logs to hide at-

tacks. https://www.zdnet.com/article/hackers-are-increasingly-destroying-logs-

to-hide-attacks/. Last accessed 04-20-2019.

[24] Scott A. Crosby and Dan S. Wallach. 2009. Efficient data structures for tamper-

evident logging. In In Proceedings of the 18th USENIX Security Symposium.

[25] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M Chen.

2014. Eidetic systems. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). 525–540.

[26] Apache Software Foundation. [n.d.]. Apache HTTP server benchmarking tool.

https://httpd.apache.org/docs/2.4/programs/ab.html.

[27] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. Griffin: Guarding control

flows using intel processor trace. In ACM SIGARCH Computer Architecture News,
Vol. 45. ACM, 585–598.

[28] Ashish Gehani, Minyoung Kim, and Jian Zhang. 2009. Steps Toward Managing

Lineage Metadata in Grid Clusters. In 1st Workshop on the Theory and Practice of
Provenance (San Francisco, CA) (TaPP’09).

[29] Ashish Gehani andDawood Tariq. 2012. SPADE: Support for Provenance Auditing

in Distributed Environments. In Proceedings of the 13th International Middleware
Conference (Montreal, Quebec, Canada) (Middleware ’12).

[30] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. 2017.

ASLR on the Line: Practical Cache Attacks on the MMU. In Proceedings of the
24th Annual Network and Distributed System Security Symposium.

[31] Steve Hales. [n.d.]. Last Door Log Wiper. https://packetstormsecurity.com/files/

118922/LastDoor.tar. Last accessed 04-20-2019.

[32] Gunnar Hartung, Björn Kaidel, Alexander Koch, Jessica Koch, and Dominik Hart-

mann. 2017. Practical and Robust Secure Logging from Fault-Tolerant Sequential

Aggregate Signatures. In Proc. of the International Conference on Provable Security

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3349

https://doi.org/10.1109/PADSW.2018.8645035
https://doi.org/10.1109/PADSW.2018.8645035
https://www.carbonblack.com/global-incident-response-threat-report/november-2018/
https://www.carbonblack.com/global-incident-response-threat-report/november-2018/
https://doi.org/10.1145/3064176.3064212
https://doi.org/10.1145/3064176.3064212
https://doi.org/10.1145/2934872.2934910
https://doi.org/10.1145/2934872.2934910
https://doi.org/10.1145/3035918.3035926
https://doi.org/10.1145/3035918.3035926
https://www.zdnet.com/article/hackers-are-increasingly-destroying-logs-to-hide-attacks/
https://www.zdnet.com/article/hackers-are-increasingly-destroying-logs-to-hide-attacks/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://packetstormsecurity.com/files/118922/LastDoor.tar
https://packetstormsecurity.com/files/118922/LastDoor.tar

(ProvSec).
[33] Wajih Ul Hassan, Nuraini Aguse, Mark Lemay, Thomas Moyer, and Adam Bates.

2018. Towards Scalable Cluster Auditing through Grammatical Inference over

Provenance Graphs. In Proceedings of the 25th ISOC Network and Distributed
System Security Symposium (NDSS’18). San Diego, CA, USA.

[34] Wajih Ul Hassan, Adam Bates, and Daniel Marino. 2020. Tactical Provenance

Analysis for Endpoint Detection and Response Systems. In 41st IEEE Symposium
on Security and Privacy (SP) (Oakland’20).

[35] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,

Zhichun Li, and Adam Bates. 2019. NoDoze: Combatting Threat Alert Fatigue

with Automated Provenance Triage. In 26th ISOC Network and Distributed System
Security Symposium (NDSS’19).

[36] Wajih Ul Hassan, Mohammad Noureddine, Pubali Datta, and Adam Bates. 2020.

OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-layer Log

Analysis. In 27th ISOC Network and Distributed System Security Symposium
(NDSS’20).

[37] Jason E. Holt. 2006. Logcrypt: Forward Security and Public Verification for

Secure Audit Logs. In Proc. of the Australasian Information Security Workshop
(AISW-NetSec).

[38] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang, Birhanu Eshete, Rigel

Gjomemo, R. Sekar, Scott Stoller, and V.N. Venkatakrishnan. 2017. SLEUTH: Real-

time Attack Scenario Reconstruction from COTS Audit Data. In 26th USENIX
Security Symposium (USENIX Security 17). USENIX Association, Vancouver,

BC, 487–504. https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/hossain

[39] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R

Harris, Taesoo Kim, and Wenke Lee. 2018. Enforcing unique code target property

for control-flow integrity. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1470–1486.

[40] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,

and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness

of non-control data attacks. In IEEE Symposium on Security and Privacy. IEEE,
969–986.

[41] IBM Knowledge Center. [n.d.]. Storage and analysis of audit logs.

https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.

ibm.db2.luw.admin.sec.doc/doc/c0052328.html. Last accessed 04-20-2019.

[42] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia Fazzini, Taesoo Kim,

Alessandro Orso, and Wenke Lee. 2017. RAIN: Refinable Attack Investigation

with On-Demand Inter-Process Information Flow Tracking. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security (Dallas,

Texas, USA) (CCS ’17). Association for Computing Machinery, New York, NY,

USA, 377–390. https://doi.org/10.1145/3133956.3134045

[43] JustLinux Forums. [n.d.]. server hacked!! /var/log deleted. how can i trace

hacker!?! http://forums.justlinux.com/showthread.php?123851-server-hacked-

var-log-deleted-how-can-i-trace-hacker. Last accessed 04-20-2019.

[44] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Latifur Khan. 2017. SGX-

Log: Securing System Logs With SGX. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security (ASIA CCS ’17).

[45] Kent Karen and Souppaya Murugiah. 2006. NIST Special Publication 800-92,

Guide to Computer Security Log Management.

[46] Taesoo Kim, XiWang, Nickolai Zeldovich, andM. Frans Kaashoek. 2010. Intrusion

Recovery Using Selective Re-execution. In OSDI. USENIX Association. http:

//dl.acm.org/citation.cfm?id=1924943.1924950

[47] Samuel T. King and Peter M. Chen. 2003. Backtracking Intrusions. In Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles
(Bolton Landing, NY, USA) (SOSP ’03). ACM, New York, NY, USA, 223–236.

https://doi.org/10.1145/945445.945467

[48] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan

Saltaformaggio, Xiangyu Zhang, andDongyanXu. 2016. LDX: Causality Inference

by Lightweight Dual Execution. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems (Atlanta, Georgia, USA) (ASPLOS ’16). ACM, New York, NY, USA, 503–515.

https://doi.org/10.1145/2872362.2872395

[49] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan Lee,

ShiqingMa, Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela Ciocarlie, Ashish

Gehani, and Vinod Yegneswaran. 2018. MCI: Modeling-based Causality Inference

in Audit Logging for Attack Investigation. In Proc. of the 25th Network and
Distributed System Security Symposium (NDSS’18).

[50] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack

Provenance via Binary-based Execution Partition. In Proceedings of NDSS ’13 (San
Diego, CA).

[51] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. LogGC: Garbage

Collecting Audit Log. In Proceedings of the 2013 ACM SIGSAC conference on
Computer and Communications Security (Berlin, Germany) (CCS ’13). ACM, New

York, NY, USA, 1005–1016. https://doi.org/10.1145/2508859.2516731

[52] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-

wan Rhee, and Prateek Mittal. 2018. Towards a Timely Causality Analysis for

Enterprise Security. In Proceedings of the 25th ISOC Network and Distributed

System Security Symposium (NDSS’18). San Diego, CA, USA.

[53] Kangjie Lu, Stefan Nürnberger, Michael Backes, and Wenke Lee. 2016. How to

Make ASLR Win the Clone Wars: Runtime Re-Randomization. In Proceedings of
the 23rd Annual Network and Distributed System Security Symposium.

[54] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung, Taesoo Kim, and

Wenke Lee. 2015. ASLR-Guard: Stopping Address Space Leakage for Code Reuse

Attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security.

[55] Di Ma and Gene Tsudik. 2009. A new approach to secure logging. ACM Transac-
tions on Storage (TOS) 5, 1 (2009).

[56] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu Zhang,

and Dongyan Xu. 2015. Accurate, Low Cost and Instrumentation-Free Security

Audit Logging for Windows. In Proceedings of the 31st Annual Computer Security
Applications Conference (Los Angeles, CA, USA) (ACSAC 2015). ACM, New York,

NY, USA, 401–410. https://doi.org/10.1145/2818000.2818039

[57] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu Zhang, Gabriela

Ciocarlie, Ashish Gehani, Vinod Yegneswaran, Dongyan Xu, and Somesh Jha.

2018. Kernel-Supported Cost-Effective Audit Logging for Causality Tracking. In

2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX Association,

Boston, MA, 241–254. https://www.usenix.org/conference/atc18/presentation/

ma-shiqing

[58] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan

Xu. 2017. MPI: Multiple Perspective Attack Investigation with Semantic Aware

Execution Partitioning. In 26th USENIX Security Symposium.

[59] ShiqingMa, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards Practical

Provenance Tracing by Alternating Between Logging and Tainting. In Proceedings
of NDSS ’16 (San Diego, CA).

[60] S. Momeni Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan.

2019. HOLMES: Real-Time APT Detection through Correlation of Suspicious

Information Flows. In 2019 2019 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA. https://doi.org/10.1109/SP.2019.00026

[61] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.

2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety for C.

In Proceedings of the 30th ACM SIG-PLAN Conference on Programming Language
Design and Implementation.

[62] National Institute of Standards and Technology. 2013. NIST Special Publica-

tion 800-53 (Rev. 4), Security Controls and Assessment Procedures for Federal

Information Systems and Organizations.

[63] Ben Niu and Gang Tan. 2014. Modular Control-flow Integrity. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation.

[64] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and

Nimrod Partush. 2017. Engineering record and replay for deployability. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). 377–389.

[65] OccupytheWeb. 2013. How to Cover Your Tracks & Leave No Trace Behind on

the Target System. https://tinyurl.com/yygqte9p. Last accessed 04-20-2019.

[66] Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Adam Bates, Christopher W.

Fletcher, Andrew Miller, and Dave Tian. 2020. Custos: Practical Tamper-Evident

Auditing of Operating Systems Using Trusted Execution. In 27th ISOC Network
and Distributed System Security Symposium (NDSS’20).

[67] Riccardo Paccagnella, Kevin Liao, Dave (Jing) Tian, and Adam Bates. 2020. Log-

ging to the Danger Zone: Race Condition Attacks and Defenses on System Audit

Frameworks. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (CCS’20).

[68] Jaehong Park, Dang Nguyen, and R. Sandhu. 2012. A Provenance-Based Access

Control Model. In Proceedings of the 10th Annual International Conference on
Privacy, Security and Trust (PST). 137–144. https://doi.org/10.1109/PST.2012.

6297930

[69] PaX Team. 2003. PaX Address Space Layout Randomization (ASLR). http://pax.

grsecurity.net/docs/aslr.txt.

[70] D.J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. 2012. Hi-Fi: Collecting High-

Fidelity Whole-System Provenance. In Proceedings of the 2012 Annual Computer
Security Applications Conference (ACSAC ’12). Orlando, FL, USA.

[71] Tobias Pulls and Roel Peeters. 2015. Balloon: A forward-secure append-only

persistent authenticated data structure. In Proc. of the European Symposium on
Research in Computer Security (ESORICS).

[72] Rapid7. [n.d.]. Metasploit, the world’s most used penetration testing framework.

https://www.metasploit.com/. Last accessed 04-20-2019.

[73] Bruce Schneier and John Kelsey. 1998. Cryptographic Support for Secure Logs

on Untrusted Machines.. In Proc. of the USENIX Security Symposium (USENIX).
[74] Bruce Schneier and John Kelsey. 1999. Secure audit logs to support computer

forensics. ACM Transactions on Information and System Security (TISSEC) (1999).
[75] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-

into-libc Without Function Calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security.

[76] Yan Shoshitaishvili, Ruoyu (Fish) Wang, Andrew Dutcher, Christophe Hauser,

John Grosen, Chris Salls, Nick Stephens, Nilo Redini, Christopher Kruegel, and

Giovanni Vigna. 2017. angr, a binary analysis framework. http://angr.io/.

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3350

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.sec.doc/doc/c0052328.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.sec.doc/doc/c0052328.html
https://doi.org/10.1145/3133956.3134045
http://forums.justlinux.com/showthread.php?123851-server-hacked-var-log-deleted-how-can-i-trace-hacker
http://forums.justlinux.com/showthread.php?123851-server-hacked-var-log-deleted-how-can-i-trace-hacker
http://dl.acm.org/citation.cfm?id=1924943.1924950
http://dl.acm.org/citation.cfm?id=1924943.1924950
https://doi.org/10.1145/945445.945467
https://doi.org/10.1145/2872362.2872395
https://doi.org/10.1145/2508859.2516731
https://doi.org/10.1145/2818000.2818039
https://www.usenix.org/conference/atc18/presentation/ma-shiqing
https://www.usenix.org/conference/atc18/presentation/ma-shiqing
https://doi.org/10.1109/SP.2019.00026
https://tinyurl.com/yygqte9p
https://doi.org/10.1109/PST.2012.6297930
https://doi.org/10.1109/PST.2012.6297930
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://www.metasploit.com/
http://angr.io/

[77] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher

Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the Ef-

fectiveness of Fine-Grained Address Space Layout Randomization. In Proceedings
of the 34th IEEE Symposium on Security and Privacy.

[78] Yutao Tang, Ding Li, Zhichun Li,MuZhang, Kangkook Jee, XushengXiao, Zhenyu

Wu, Junghwan Rhee, Fengyuan Xu, and Qun Li. 2018. NodeMerge: Template

Based Efficient Data Reduction For Big-Data Causality Analysis. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 1324–1337. https:

//doi.org/10.1145/3243734.3243763

[79] Dawood Tariq, Maisem Ali, and Ashish Gehani. 2012. Towards Automated

Collection of Application-Level Data Provenance. In 4th USENIX Workshop on the
Theory and Practice of Provenance. USENIX, Boston, MA. https://www.usenix.

org/conference/tapp12/workshop-program/presentation/Tariq

[80] The MITRE Corporation. 2017. CAPEC-81: Web Logs Tampering. https://capec.

mitre.org/data/definitions/81.html. Last accessed 04-20-2019.

[81] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-edge Control-

flow Integrity in GCC & LLVM. In Proceedings of the 23rd USENIX Security
Symposium.

[82] Valgrind Developers. 2017. Valgrind. http://www.valgrind.org/.

[83] Victor van der Veen, Enes Goktas, Moritz Contag, Andre Pawlowski, Xi Chen,

Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano

Giuffrida. 2016. A Tough Call: Mitigating Advanced Code-Reuse Attacks at the

Binary Level. In Proceedings of the 37th IEEE Symposium on Security and Privacy.
[84] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. 2017. Fear and Logging

in the Internet of Things. In Proceedings of the 25th ISOC Network and Distributed
System Security Symposium (NDSS’18).

[85] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Jung-

whan Rhee, Zhengzhang Zhen, Wei Cheng, Carl A. Gunter, and Haifeng chen.

2020. YouAreWhat YouDo: Hunting StealthyMalware via Data Provenance Anal-

ysis. In 27th ISOC Network and Distributed System Security Symposium (NDSS’20).
[86] Yulai Xie, Dan Feng, Zhipeng Tan, Lei Chen, Kiran-Kumar Muniswamy-Reddy,

Yan Li, and Darrell D.E. Long. 2012. A Hybrid Approach for Efficient Provenance

Storage. In Proceedings of the 21st ACM International Conference on Information
and Knowledge Management (Maui, Hawaii, USA) (CIKM ’12).

[87] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Dan Feng, Yan Li, and Darrell D. E.

Long. 2013. Evaluation of a Hybrid Approach for Efficient Provenance Storage.

Trans. Storage 9, 4, Article 14 (Nov. 2013), 29 pages. https://doi.org/10.1145/

2501986

[88] Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W. Hamlen, and

Zhiqiang Lin. 2019. CONFIRM: Evaluating Compatibility and Relevance of

Control-flow Integrity Protections for Modern Software. In 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA, 1805–

1821. https://www.usenix.org/conference/usenixsecurity19/presentation/xu-

xiaoyang

[89] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng

Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. 2016. High Fidelity Data

Reduction for Big Data Security Dependency Analyses. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security (Vienna,

Austria) (CCS ’16). ACM, New York, NY, USA, 504–516. https://doi.org/10.1145/

2976749.2978378

[90] Carter Yagemann, Salmin Sultana, Li Chen, and Wenke Lee. 2019. Barnum:

Detecting Document Malware via Control Flow Anomalies in Hardware Traces.

In International Conference on Information Security. Springer, 341–359.
[91] Attila Altay Yavuz and Peng Ning. 2009. BAF: An efficient publicly verifiable se-

cure audit logging scheme for distributed systems. In Proc. of the Annual Computer
Security Applications Conference (ACSAC).

[92] Attila A Yavuz, Peng Ning, and Michael K Reiter. 2012. Efficient, compromise

resilient and append-only cryptographic schemes for secure audit logging. In

Proc. of the International Conference on Financial Cryptography and Data Security
(FC).

[93] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-

Camant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity and

Randomization for Binary Executables. In Proceedings of the 34th IEEE Symposium
on Security and Privacy.

[94] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In

Proceedings of the 22nd USENIX Security Symposium.

[95] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo,

and Micah Sherr. 2011. Secure Network Provenance. In ACM Symposium on
Operating Systems Principles (SOSP).

Session 12B: Analyzing Crashes and Incidents CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3351

https://doi.org/10.1145/3243734.3243763
https://doi.org/10.1145/3243734.3243763
https://www.usenix.org/conference/tapp12/workshop-program/presentation/Tariq
https://www.usenix.org/conference/tapp12/workshop-program/presentation/Tariq
https://capec.mitre.org/data/definitions/81.html
https://capec.mitre.org/data/definitions/81.html
http://www.valgrind.org/
https://doi.org/10.1145/2501986
https://doi.org/10.1145/2501986
https://www.usenix.org/conference/usenixsecurity19/presentation/xu-xiaoyang
https://www.usenix.org/conference/usenixsecurity19/presentation/xu-xiaoyang
https://doi.org/10.1145/2976749.2978378
https://doi.org/10.1145/2976749.2978378

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Existing Defenses & Limitations
	2.2 Insights & Lessons Learned

	3 Execution Repartitioning Attacks
	3.1 Spoofing Attacks
	3.2 Delay Attacks
	3.3 Crafting Real-World Exploits

	4 Threat Model & Assumptions
	4.1 Quantifying EUP Attack Surface

	5 Design & Implementation
	5.1 Intel Processor Trace
	5.2 Offline Profiling
	5.3 Online Auditing
	5.4 Signature Match Validation
	5.5 Execution Partitioning

	6 Evaluation
	6.1 Partition Validation Accuracy
	6.2 Partitioning Attack Surface Reduction
	6.3 Attack Investigation
	6.4 Runtime & Space Overhead

	7 Discussion
	8 Related Work
	8.1 Attack Reconstruction
	8.2 Log Deduplication and Compression
	8.3 Control Flow Bending

	9 Conclusion
	References

