
Portable Parallel Programs using Architecture-aware Libraries

Fadi Zaraket Mohamad Noureddine Mohamed Sabra Ameen Jaber
American University of Beirut

{fz11,man17,mns28,aaj15}@aub.edu.lb

Abstract
Programs written for an architecture with n processors require a
re-write when migrated to an m processor architecture {(m > n)}
to benefit from additional resources. Compiler based solutions do
not match manual optimizations. Annotation based and api-based
solutions such as the OpenMP and the Intel Array Building Blocks
work well with data parallel programs and do not scale well with
branching programs. We present Portable Parallel Programming
(TripleP), a parallel programming methodology that is composed
of a declarative programming language, a set of libraries of data
structures and algorithms optimized per architecture, and a synthe-
sizer. We evaluated TripleP with the computation of array median,
and breadth first traversal of a graph. Our results show that TripleP
enables portable programs that benefit from additional resources
across architectures with near optimal performance gains.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming - Parallel programming; D.3.2
[Programming Languages]: Language Classifications - Concurrent,
distributed, and parallel languages

General Terms Algorithms, Intelligence

Keywords Declarative language, software synthesis, concurrency

1. Introduction
Sequential software programs do not benefit from advances in
multi-processor and multi-core architectures. With the emergence
of commodity multi-processor and multi-core architectures, this
problem gained more attention form the research community. Se-
quential programs are strictly ordered sequences of operations.
Parallel programs specify a partial order between operations and
thus can execute several operations at once. Compiler based par-
allelization techniques try to automatically find and use partial or-
ders in sequential code [17]. Compiler based techniques fail of-
ten to match manual optimizations in terms of performance [13].
API based techniques such as POSIX [4] require the programmer
to specify the partial order between program operations in terms
of constructs such as threads, locks, and semaphores. Annotation
based API techniques such as OpenMP [5] require the programmer
to specify code segments amenable to parallelization with annota-
tions that can be ignored when compiling and running in a sequen-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SAC’12 March 26-30, 2012, Riva del Garda, Italy.
Copyright c© 2012 ACM 978-1-4503-0857-1/12/03. . . $10.00

tial mode. Other techniques such as CUDA [10] and OpenCL [15]
require user knowledge of the target computational platform.

Synthesis based parallelization techniques for signal process-
ing [8, 9] and linear algebra [3] as well as content-based parallel
data structures [2, 7] emerged. We discuss and compare against
these techniques in section 3.

A declarative program expresses the logical function only rather
than the number of processors, locks, and semaphores. Declara-
tive programming languages are amenable to automatic paralleliza-
tion [16].

We propose portable parallel programming (TripleP), a pro-
gramming methodology that uses declarative programming to en-
able automatic parallelization, a comprehensive architecture-aware
library of data structures and algorithms, a library-aware synthe-
sizer, and a multi-threaded task execution framework to automate
parallelization. For each parallel architecture A , TripleP provides
a library of data structures and algorithms optimized for A.

TripleP takes as input a declarative program P and passes a
directed acyclic parse graph (DAG) of P to the synthesizer. For
each construct in the parse DAG, the synthesizer instantiates an
optimized library component as a task in the multi-threaded task
execution framework.

The TripleP declarative language is intuitively parallel. The user
does not need to write code in two modes, one sequential and one
parallel. This promotes a culture of parallel data structures and
algorithms. The TripleP programs are portable across supported
architectures and run with near optimal performance gains on more
parallel architectures without the need to be modified or rewritten.

2. TripleP
A TripleP program is a list of statements. A statement can be
either a type declaration, a variable declaration, an algorithm or an
expression. TripleP has one scalar primitive type. The keywords
sequence, set, relation, function express user-defined ordered set
of elements, unordered set, many to many property from one type
to another and a many to one property from one type to another,
respectively.

TripleP supports addition, subtraction, multiplication and divi-
sion as algorithms. It also supports set membership, enumeration,
Cartesian product, exponentiation, union, intersection and subtrac-
tion algorithms.

An expression can either be an initialization expression, an iter-
ator expression, an equality expression, or a conditional expression.
Iterator expressions iterate over container elements where a condi-
tion holds. Conditional and equality expressions express logic con-
ditions on variables.

Listing 2 describes a weighted graph G = 〈V,E,W 〉 where V
is a set of vertices, E ⊆ V ×V is a set of edges, and W : E 7→ Z is
a weight function. It also visits the vertices in G with a breadth first
traversal algorithm. TripleP allows connections between objects.
For example, the vertices parameter of G is connected to ‘v’.

1922

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2245276.2232093&domain=pdf&date_stamp=2012-03-26

Algorithm 1 Declarative Language Example
DeclareType Set of Integer Vertices;
DeclareType Relation from Vertices to Vertices Edges;
DeclareType Function from Edges to Integer Weights;
DeclareTye Sequence of vertices, edges, weights Graph;

Vertices V;
Edges E from V to V;
Weights W from E to Integer;

Graph G (vertices = V, edges = E, weights = W);
TraverseBF B (graph = G, visitor = Default);

Run time framework. TPTask is the multi-threaded task-
based run time framework implemented using POSIX [4]. TripleP
algorithms and data structures use TPTask internally to perform
their work. The TripleP end user can not interface with TPTask.

A pool of worker threads monitors a task priority queue. A
worker thread removes a task from the queue and runs it. When
done it reports to its parent. A task may be placed back on the
queue in case it needs data from other tasks.

Synthesizer. The TripleP synthesizer (TPSyn) traverses a
parse graph of a declarative program recursively. For each node
in the parse graph, TPSyn selects the corresponding algorithms,
data structures, and adequate parameters for the architecture at
hand from the TripleP library of optimized components. TPSyn
deploys these components as tasks in TPTask. TPSyn also picks
parameters for the task such as the number of preallocated threads,
the maximum number of threads, the size of preallocated memory,
and the memory allocation mechanism.

3. Related Work
Compiler based techniques reorder sequential into parallel code by
exploiting dependence relations between operations [17],they fail
to match manual optimizations in terms of performance [13].

API based techniques, such as POSIX, MPI and OpenCL, re-
quire the programmer to explicitly specify the order of operations
and use architecture specific features [4, 15].

Annotation based techniques, such as OpenMP, work well with
data parallel sections of code. They do not scale well with branch-
ing and dependent code [5].

The Array Building Blocks (ArBB) library from Intel supports
parallel operations on scalar containers [7]. The ArBB just in time
compiler allows dynamic transformations of sequential code into
parallel code on parallel entry points defined by the user. TripleP
differs in that it uses synthesis at compile time to generate parallel
binaries from declarative programs, and uses a dynamic task-based
multi-threaded run time framework. TripleP takes as input declara-
tive code that is explicitly parallel, while ArBB requires the user to
write sequential code with sophisticated annotations and partially
parallel code.

Hierarchical tiled arrays (HTA) provides data structures that in-
terpret tiles as array objects and abstracts the locality and paral-
lelization potential of array operations [2]. HTA provides data par-
allelism through HTA tiles in the context of single threaded pro-
grams. TripleP differs in that it uses a declarative rather than a se-
quential imperative language, and provides data and control paral-
lelism through its synthesis and task-based multi-threaded runtime
framework.

SPIRAL is a platform that generates portable optimal perfor-
mance programs for linear digital signal processing (DSP) compu-
tations [8]. It uses search and machine learning techniques based
on the structure of the algorithm and the implementation to find

Figure 1. Median and average execution time

the best matching algorithmic and implementation choices for a
specific architecture. FFTW [9] and ATLAS [3] target discrete fast
Fourier transforms and linear algebra computations, respectively.
They use empirical learning to select from a library of tunable al-
gorithms.

TripleP is similar to SPIRAL, FFTW and ATLAS in that it se-
lects the algorithm and the implementation that best fits the subject
architecture, via knowledge based rules and manual effort. TripleP
works across several problems and is not limited to linear DSP and
algebra. TripleP can use the choices made by SPIRAL, FFTW, and
ATLAS for a specific architecture wherever these choices prove to
be better.

Existing parallelization techniques that extract parallel pro-
grams from declarative programs use automatic program transfor-
mations that do not scale well to extract efficient parallel programs,
and may in turn require scheduling annotations [16]. TripleP differs
in that its synthesis approach is library based. TripleP also tunes the
parallelism and memory allocation mechanisms at run time.

4. Results
The current version of TripleP supports four architectures with
shared memory with 4, 8, 16, and 32 processing units each re-
spectively. We had access to these architectures through the Intel
Many-core Testing Lab (MTL) [1].

The TripleP library supports parallel vector and matrix arith-
metic operations, dense and sparse graphs, graph depth first and
breadth first traversal. We picked the data structures and algorithms
from different sources such as textbooks,articles [6, 11, 18], and
existing C++ libraries [14].

Median and average Figure 1 shows the results of running two
user tasks that compute the median and the average of a sequence
of scalars using TripleP on three different architectures with one,
two, and four cores respectively simulated using the Metropolis
framework [12]. The results show the execution time taken by the
simulation on each of the architectural models, versus the size of
the input data.

Breadth first search The charts in Figure 2 show the run-
ning time for the breadth first traversal of dense graphs with 80K,
100K, and 200K vertices. The TripleP implementation ran multiple
breadth first traversals and merged the results at the end of each
traversal. TripleP achieved near optimal gains across architectures
except for the 32 core because of the dense nature of the graphs.

Comparison with ArBB The TripleP median selection
marginally outperformed the ArBB median selection algorithm.
We implemented the breadth first traversal and the minimum span-
ning tree computations with the ArBB library. We could not pro-
duce running time results to compare against because the ArBB
run-time library produced faulty code for the branching parts of the
BF algorithm. We reported the issue to Intel ArBB engineers.

1923

Figure 2. Breadth first traversal results

Acknowledgment This work was made possible by a grant
from the University Research Board at the American University of
Beirut.

5. Conclusion
We presented TripleP, a Parallel Programming Platform composed
of a declarative language, a multi-threaded task-based run time
framework, a set of libraries of parallel algorithms and data struc-
tures, and a synthesizer. The TripleP declarative language abstracts
the execution order of the program away from the developer and al-
lows for explicit parallelism without requiring architecture specific
annotations and structures. We evaluated TripleP using selection,
and graph traversal algorithms. In the future, we plan to extend the
TripleP library to include more graph computations, and regular
expressions.

References
[1] Intel manycore testing lab. http://software.intel.com/en-

us/forums/intel-manycore-testing-lab.

[2] Programming for parallelism and locality with hierarchically tiled
arrays. ACM, 2006.

[3] C. W. Antoine, A. Petitet, and J. J. Dongarra. Automated empirical
optimization of software and the atlas project. Parallel Computing,
27:2001, 2000.

[4] B. Barney. POSIX Threads Programming, 2010.

[5] N. Copty. Introducing OpenMP: A Portable, Parallel Programming
API for Shared Memory Multiprocessors. Sun Studio Technical Arti-
cles, 2010.

[6] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 3rd edition, 2009.

[7] A. G. et al. Array Building Blocks: A Flexible Parallel Programming
Model for Multicore and Many-Core Architectures. Dr. Dobb’s Jour-
nal, 2010.

[8] M. P. et al. Spiral: A generator for platform-adapted libraries of signal
processing algorithms. Journal of High Performance Computing and
Applications, 18:21–45, 2004.

[9] M. Frigo and S. G. Johnson. Fftw: An adaptive software architecture
for the fft. In ICASSP, pages 1381–1384. IEEE, 1998.

[10] D. Luebke. CUDA: Scalable parallel programming for high-
performance scientific computing. In Biomedical Imaging: From Nano
to Macro. IEEE, 2008.

[11] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, 1997.

[12] N/A. Metropolis: Design Environment for Heterogeneous Systems.
http://embedded.eecs.berkeley.edu/metropolis/, 2004.

[13] G. Ren, P. Wu, and D. Padua. An empirical study on the vectorization
of multimedia applications for multimedia extensions. In International
Parallel and Distributed Processing Symposium, volume 01 of IPDPS,
pages 89.2–, Washington, DC, USA, 2005. IEEE Computer Society.

[14] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library.
Addison-Wesley Professional, Dec 2001.

[15] J. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming
standard for heterogeneous computing systems. Computing in Science
& Engineering, 12:66, 2010.

[16] E. Trichina. Derivation of explicitly parallel code from declarative
program by transformations. In Perspectives of System Informatics,
volume 1181, pages 178–190. Springer Berlin / Heidelberg, 1996.

[17] M. Wolfe. Parallelizing compilers. ACM Computing Surveys, 28:261–
262, March 1996.

[18] C. Xavier and S. S. Iyengar. Introduction to parallel algorithms. John
Wiley & Sons, Inc., New York, NY, USA, 1998.

1924

